Bimetallic Systems. Part 5.¹ Isonitrile–Platinum(II)– or –Palladium(II)– Bis(diphenylphosphino)methane Complexes including Heterobimetallics with Silver(I), Gold(I), or Rhodium(I)

C. Richard Langrick, Paul G. Pringle, and Bernard L. Shaw * School of Chemistry, The University, Leeds LS2 9JT

Treatment of *cis*-[PtCl₂(dppm-*PP'*)] with Bu'NC gives $[(Bu'NC)_2Pt(\mu-dppm)_2Pt(CNBu')_2]^{4+}$, isolated as the PF₆⁻ salt (dppm = Ph₂PCH₂PPh₂). Treatment of $[M(dppm-PP')_2]Cl_2$ (M = Pt or Pd) with two equivalents of Bu'NC or MeNC gave fluxional, mononuclear isonitrile complexes of type $[M(CNR)_2(dppm-P)_2]^{2+}$, isolated as their PF₆⁻ or BPh₄⁻ salts. The palladium salts readily lose the CNR ligands. The unidentate-dppm complexes of type $[Pt(CNR)_2(dppm-P)_2]^{2+}$ react with AgPF₆, HgCl₂, or $[Rh_2Cl_2(CO)_4]$ to give heterobimetallic complexes with μ -dppm ligands, but these were not isolated in a pure state. However, the salts $[M(dppm-PP')_2]Cl_2$ (M = Pt or Pd) react with the compounds [AgCl(CNR)] (R = Me, Bu', or *p*-tolyl) to give the heterobimetallic complexes [(RNC)- $CIM(\mu-dppm)_2AgCl]^+$ in high yield. These were isolated as Cl⁻, BPh₄⁻, or PF₆⁻ salts. The salt $[Pt(CNBu')_2(dppm-P)_2]Cl_2$, prepared *in situ* from $[Pt(dppm-PP')_2]Cl_2$ and Bu'NC, reacts with $[{AgCl(PPh_3)}_4]$ or $[AuCl(PPh_3)]$ to give $[(Bu'NC)CIPt(\mu-dppm)_2MCl]Cl$ (M = Ag or Au). Treatment of $[Pt(dppm-PP')_2]Cl_2$ with $[Au(C\XiCPh)(CNBu')]$ gives $[(Bu'NC)(PhC\XiC)Pt(\mu-dppm)_2 AuCl]Cl. Treatment of <math>[(Bu'NC)CIPt(\mu-dppm)_2AgCl]Cl$ with $[Rh_2Cl_2(CO)_4]$ gives the complex $[(Bu'NC)CIPt(\mu-dppm)_2RhCl(CO)][RhCl_2(CO)_2]$ and silver chloride in a transmetallation reaction. I.r. and $^{1}H-{^{31}P}$, $^{31}P-{^{1}H}$, and $^{195}Pt-{^{1}H}$ n.m.r. data are given and discussed.

We have described in previous papers how bimetallic complexes of type $[Pt_2(C=CR)_4(\mu-dppm)_2]$ and fluxional monometallic complexes, $[M(C \equiv CR)_2(dppm - P)_2]$, are readily prepared (M = Pt or Pd; R = alkyl or aryl; dppm = Ph_2 -PCH₂PPh₂).^{2,3} Furthermore the monometallic complexes can be used in the systematic synthesis of a wide range of heterobimetallic complexes of type $[(RC \equiv C)_2 M(\mu - dppm)_2 M'L_x]$ (M = Pt or Pd; M' = Cr, Mo, W, Rh, Ir, Cu, Ag, Au, Cd, orHg; L = various ligands).³⁻⁷ In this work the acetylide ligands were considered to be important in that (i) they are strongly bonding to platinum or palladium, and (ii) they have a strong preference to be mutually trans. It therefore seemed possible that isonitrile ligands, RNC, which are isoelectronic with acetylide ligands, RC=C-, might generate similar chemistry. Thus we hoped to be able to synthesize bimetallic tetracationic species $[M_2(CNR)_4(\mu-dppm)_2]^{4+}$ and monometallic species $[M(CNR)_2(dppm-P)_2]^{2+}$, and the derived heterobimetallic complexes.

Results and Discussion

Organic isonitriles, RNC, are good ligands for platinum(II) and palladium(11); they can form stable cis or trans complexes when the other ligands are tertiary phosphines, and will readily displace a chloride ligand to form salts.^{8,9} When we treated a methanolic suspension of cis-[PtCl₂(dppm-PP')] with Bu'NC a colourless solution formed, the ³¹P-{¹H} n.m.r. spectrum of which showed it to contain the diplatinum cationic complex $[(Bu'NC)_2Pt(\mu-dppm)_2Pt(CNBu')_2]^{4+}$, as the sole phosphoruscontaining product. Evaporation of the solution gave a chloride salt which we formulate as (1a) but which was not obtained analytically pure. However, addition of a methanolic solution of NH_4PF_6 to a methanolic solution of (1a) gave the corresponding hexafluorophosphate salt (1b) as a white microcrystalline solid. This showed the same $^{31}\text{P-}\{^1\text{H}\}$ n.m.r. resonance pattern as the chloride salt (1a) (see Table 1) (in addition to the septet due to PF_6^-). This salt was somewhat unstable and difficult to purify and although it gave satisfactory elemental analytical data for H and N (Table 2) the percentage carbon content was slightly high and that of fluorine slightly low. The i.r. absorption spectrum of (1a) or (1b) showed a band at 2 240 cm⁻¹ typical of co-ordinated isonitrile ⁸ and the ¹⁹⁵Pt-{¹H} n.m.r. spectrum a triplet of triplets with $\delta(Pt) = -159$ p.p.m. Unfortunately, the salt was insoluble in chlorinated solvents or acetone and, although it was soluble in CD₃OD or (CD₃)₂SO, both these solvents showed impurity peaks close to the regions where CH₂ and Bu^t absorb in the ¹H-{³¹P} n.m.r. spectrum. Thus, although the resonances for CH₂ and Bu^t were readily identified (Table 3), accurate integrations were not obtained. However, the formulations (1a) and (1b) are very probably correct; the isoelectronic dirhodium complex ions [Rh₂(CNR)₄(µ-dppm)₂]²⁺ have been well characterized.¹⁰⁻¹³

Since organic isonitriles, RNC, are isoelectronic with acetylides, $RC=C^{-}$, we anticipated that they should give similar bis(dppm-P) complexes with platinum or palladium of type $[M(CNR)_2(dppm-P)_2]^{2+}$ (M = Pt or Pd). Whilst this work was in progress the paper by Balch and co-workers¹⁴ describing the crystal structure of $[Pd(CNBu')_2(dppm-P)_2]$ -[BPh₄]₂ was published. We found that when ethanolic solutions of the bis(dppm)-platinum or -palladium salts [M(dppm- PP'_{1_2} were treated with 2 mol equivalents of an organic isonitrile (Bu'NC or MeNC), mononuclear bis(dppm) diisonitrile complexes of type $[M(CNR)_2(dppm-P)_2]^{2+}$ (M = Pd or Pt; R = Me or Bu^t) were formed and could be isolated as their PF_6^- or BPh_4^- salts, by addition of NH_4PF_6 or NaBPh₄, respectively. Preparative details are in the Experimental section and microanalytical, n.m.r., i.r., and electrical conductivity data are in the Tables. The palladium salts, even in the solid state, are prone to lose the isonitrile ligands and revert back to $[Pd(dppm-PP')_2]X_2$ (X = BPh₄⁻ or PF₆⁻) as evidenced from ³¹P-{¹H} n.m.r. spectroscopy. The platinum complexes were more stable, showing less tendency to lose isonitrile ligands. The complexes $[M(CNR)_2(dppm-P)_2]^{2+}$ showed fluxionality, corresponding to intramolecular 'end over end 'exchange of the dppm ligands, as we have previously reported for the diacetylide complexes trans-[M(C=CR)2- $(dppm-P)_2$]. The ³¹P-{¹H} n.m.r. spectrum of $[Pt(CNMe)_2 (dppm-P)_2$]Cl₂, prepared in situ in EtOH at -21 °C, consists of a broad singlet at $\delta = -13.7$ p.p.m., $w_{\star} = 56$ Hz, with

platinum satellites, J(PtP) = 1265 Hz (see Figure 1), which we interpret in terms of rapid 'end over end 'intramolecular exchange. On cooling these resonances broaden then separate until at -90 °C the ³¹P-{¹H} n.m.r. spectrum (Figure 1) corresponds to the static structure (2c) with an AA'BB' (or AA'XX') pattern of deceptively simple triplets plus platinum satellites.

The occurrence of deceptively simple triplets is indicative of a large value of ${}^{2}J(P-Pt-P)$, *i.e. trans*-phosphines, as is the value of ${}^{1}J(PtP_{A}) = 1$ 997 Hz. We found that a similar behaviour with temperature was exhibited by the ${}^{31}P-{}^{1}H$ n.m.r. spectra of the corresponding BPh_4^- and PF_6^- salts (2a) and (2b) and indicates that the chloride ion is not playing a significant role in the fluxionality. Whereas these di-isonitrile complexes [Pt(CNR)₂(dppm-P)₂]²⁺ required a very low temperature $(-90 \degree C)$ before the rapid 'end over end' exchange ceased, the corresponding exchanges in the isoelectronic diacetylides $[Pt(C=CR)_2(dppm-P)_2]$ were frozen out at -30 °C.^{2,3} It is possible that the dipositive charge on the diisonitrile complexes causes the metal centre to interact more strongly with the remote phosphorus nuclei, hence lowering ΔG^{\ddagger} . As mentioned above, Balch and co-workers ¹⁴ prepared $[Pd(CNBu^{t})_{2}(dppm-P)_{2}]^{2+}$ but reported the ³¹P-{¹H} n.m.r. spectrum to consist of a broad singlet, at ca. -23 p.p.m., even at -80 °C. However, we observe the expected AA'XX' pattern at -90 °C in CD₂Cl₂ and a singlet resonance at $\delta =$ -13.3 p.p.m. at +21 °C (see Table 1 and footnotes). We suggest that the spectra they observed were of the dication $[Pd(dppm-PP')_2]^{2+}$ which shows $\delta(\mathbf{P}) = ca. -23$ p.p.m. and, as reported above, the di-isonitrile complexes [Pd(CNR)₂- $(dppm-P)_2$ ²⁺ readily lose isonitrile to give $[Pd(dppm-PP')_2]^{2+}$.

Heterobimetallic Complexes.—We have reported that complexes of type trans- $[MX_2(dppm-P)_2]$ (M = Pt or Pd; X = C=CR or CN) can readily form heterobimetallic complexes with other metals such as Mo, W, Rh, Ir, Cu, Ag, Au, Cd, or Hg.^{1,5-7,15-17} We similarly hoped to make heterobimetallic complexes using the di-isonitrile complex dications trans- $[M(CNR)_2(dppm-P)_2]^2+$. ³¹P-{¹H} N.m.r. studies showed that addition of AgPF₆, [{AgCl(PPh₃)}₄], HgCl₂, or [Rh₂Cl₂-(CO)₄] to these unidentate bis(dppm) di-isonitrile complexes $[M(CNR)_2(dppm-P)_2][X]_2$ (X = PF₆⁻ or BPh₄⁻, M = Pt or Pd, R = Me or Bu^{t}) gave heterobimetallic complexes of the expected types, viz. $[(RNC)_2M(\mu-dppm)_2M'L_x]^{n+}$ (M = Pt or Pd; M' = Ag, Hg, or Rh; L = Cl, CO, etc.), but these were always contaminated with other species, e.g. [MCl2(dppm-PP')], and none was characterized. We then tried to make heterobimetallic complexes by a different route. We have shown previously that salts of type $[M(dppm-PP')_2]Cl_2$ (M = Pt or Pd) react with acetylides of d^{10} metals, e.g. Hg(C=CR)₂, CuC=CPh, AuC=CPh, or AgO₂CMe-HC=CR to give heterobimetallic complexes.^{1,4,5} We reasoned therefore that the readily prepared silver-isonitrile complexes, [AgCl(CNR)],¹⁸ might react similarly with [M(dppm-PP')2]Cl2. Hence, we treated dichloromethane solutions of these salts with the equivalent amounts of [AgCl(CNR)] (R = Me, Bu^t, or p-tolyl) and found smooth conversion into the required heterobimetallic complexes [(RNC)ClM(µ-dppm)₂AgCl]⁺ (3a)-(3g). Details are in the Experimental section and elemental analytical, i.r., and n.m.r. data are in the Tables.

The electrical conductivity in nitrobenzene solution showed the compounds to be 1 : 1 electrolytes (Table 2). At ambient temperatures the ³¹P-{¹H} n.m.r. spectrum of [(Bu¹NC)Cl-Pt(μ -dppm)₂AgCl]Cl (3b) showed sharp resonances due to P_A but slightly broadened resonances due to P_B although the fine structure due to coupling with ¹⁰⁷Ag and ¹⁰⁹Ag was still resolved. The slight broadening is probably due to some silverphosphine exchange. However, at lower temperatures, the ³¹P-{¹H} n.m.r. pattern is sharper; this is reproduced in Figure 2. The observed ratio ¹J(¹⁰⁹AgP_B)/¹J(¹⁰⁷AgP_B) = 473/408 = 1.16, close to the ratio of the gyromagnetic ratios (1.15). Long range coupling of platinum-195 to P_B was also

Table 1.	³¹ P-{ ¹ H}	and and	195Pt-{	1H} °	n.m.r.	and i.r.	data
----------	-----------------------------------	---------	---------	-------	--------	----------	------

	Complex	δ(Ρ)	¹ J(PtP)	δ(Pt) [•]	³ J(PtP)		v(C=N) ^c /cm ⁻¹					
	(1a) ^d	-1.5	2 246	- 159	- 56		2 240					
Unidentate co	nplexes of type	e (2) *										
		.,				$^{2}J(\mathbf{P_{A}P_{B}}) +$						
	Complex	δ(P _A)	$^{1}J(PtP_{A})$	δ(P _B)	$^{3}J(PtP_{B})$	$^{4}J(\mathbf{P_{A}P_{B'}})$	v(C=N) ^c /cm ⁻¹					
	(2a) ^s	+ 4.9	1 936	- 28.7	90	120	2 265					
	(2b)	+ 7.8	1 950	-28.2	n.r.	105	2 280					
	$(2c)^{f}$	+ 7.5	1 997	-27.0	34	123						
	(2d)	+ 6.1	1 970	- 29.5	85	125	2 215					
	(2e)	+ 6.2	1 980	- 29.7	n.r.	122	2 2 3 0					
	$(2f)^{g,h}$	+ 6.4	2 077	-29.8	142	105	_					
	(2g) '	+ 18.9		-24.5		120	2 255					
	$(2h)^{J}$	+ 19.5		-24.9		117	2 260					
	(2i) *	+15.3		- 26.6		119	2 225					
	(2j) ¹	+15.5		-27.0		127	2 230					
Heterobimetal	lic complexes o	of types (3)(5) ‴									
	····		-,				$^{2}J(P_{A}P_{B}) +$					
Complex	δ(P _A)	¹ J(PtP _A) δ(P _B)	¹ J(¹⁰⁹ AgP	$^{1}J(^{107}AgP_{B})$	$^{3}J(PtP_{B})$	$^{4}J(\mathbf{P}_{A}\mathbf{P}_{B'})$	v(C≡N)/cm ⁻¹				
(3a)	+18.2	2 1 5 3	-7.2	469	405	67	83	2 265				
(3b)	+17.3	2 1 5 6	-7.9	473	408	64	81	2 230				
(3c)	+18.7	2 140	-7.5	471	408	60	81	2 220				
(3d)	+17.2	2 1 5 6	- 7.9	474	410	n. r .	81	2 230				
(3e)	+ 24.1		-4.9	459	411	_	86	2 260				
(3f)	+23.6		- 5.3	478	429		86	2 238				
(3g)	+24.7		4.8	475	410		88	2 210				
(4)	+13.8	2 192	+ 22.8			48	54	2 240				
(5)	+8.2	2 336	+ 26.2			103	51	2 220				
								[v(C≡C) 2 120]				
Platinum-rhodium complexes of type (6) *												
C	omnlex	δ(P ₁)	$^{1}J(PtP_{\star})$	δ(P _n) ¹	لا ل(RhP_n) 4J	$(A^{T}B) + P_{A}P_{B'}) = V(C \equiv 1)$	N)/cm ⁻¹ v(C≘C))/cm ⁻¹				
U U	((-)		2 202	147	107	AA	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 004				
	(6a) (6b)	+4.9	2 293	+14.7 +12.2	127	44 42	2 225 1 995,	1 994 1 980 (sh)				
" Chemical shi	fts (δ) (in p.p.	.m.: +0.1 p.r	.m.) relative to	85% H.POA	(positive shift to	high frequenc	y); coupling cor	istants (J) in Hz				
(+3 Hz). The	phosphorus a	toms $\mathbf{P}_{\mathbf{A}}$ are o	co-ordinated to	either Pt or P	d: atoms P _n are	either unco-or	dinated as in co	mpounds of type				
(2) or co-ordi	nated to anoth	er metal, as	in compounds	of types (3)(6). n.r. = Not r	(2) or co-ordinated to another metal, as in compounds of types (3)-(6). n.r. = Not resolved. ^b A negative shift (in p.p.m.) is to low						

¹ Chemical shifts (b) (in p.p.m.; ± 0.1 p.p.m.) relative to 83% H₃PO₄ (positive shift to high frequency); coupling constants (J) in Hz (± 3 Hz). The phosphorus atoms P_A are co-ordinated to either Pt or Pd; atoms P_B are either unco-ordinated as in compounds of type (2) or co-ordinated to another metal, as in compounds of types (3)—(6). n.r. = Not resolved. ^b A negative shift (in p.p.m.) is to low frequency of $\Xi(^{195}Pt) = 21.4$ MHz. ^c As Nujol mulls. ^d In CD₃OD. ^e In CD₃COCD₃ at -90 °C, unless stated otherwise. ^f In CD₂Cl₂ at -90 °C. ^e Not isolated, measured in EtOH at -90 °C with external CD₃COCD₃ lock. ^h The ³¹P-{¹H} n.m.r. spectrum in EtOH at +21 °C showed a single broad central peak at $\delta = -15.2$ p.p.m., $w_{\pm} = 56$ Hz, with satellites, ¹/(PtP) = 1 225 Hz. ¹ The ³¹P-{¹H} n.m.r. spectrum at +21 °C showed a broad singlet at $\delta = -14.2$ p.p.m., $w_{\pm} = 34$ Hz. ¹ The ³¹P-{¹H} n.m.r. spectrum at +21 °C showed a broad singlet at $\delta = -13.6$ p.p.m., $w_{\pm} = 57$ Hz. ^k The ³¹P-{¹H} n.m.r. spectrum at +21 °C showed a broad singlet at $\delta = -13.3$ p.p.m., $w_{\pm} = 40$ Hz. ⁱ The ³¹P-{¹H} n.m.r. spectrum at +21 °C showed a broad singlet at $\delta = -13.3$ p.p.m., $w_{\pm} = 40$ Hz.

observed, ${}^{3}J(PtP_{B}) = 64$ Hz. The ${}^{1}H{}{}^{1}P$ n.m.r. spectrum of the corresponding methyl isocyanide complex [(MeNC)-ClPt(μ -dppm)₂AgCl]Cl (3a) shows a well defined 1:4:1 triplet due to coupling to ${}^{195}Pt$, ${}^{4}J(PtCNCH_{3}) = 21$ Hz, indicating that the methyl isocyanide has indeed been transferred from silver to platinum. At *ca.* +20 °C the CH₂ resonance is broad but at -50 °C it consists of a broad AB pattern. Unfortunately the coupling constants to platinum could not be measured, the satellite peaks being very broad. The corresponding tetraphenylborate salt [(Bu'NC)ClPt(μ -dppm)₂AgCl]-BPh₄ (3d) was readily prepared by adding NaBPh₄ to an ethanol solution of the corresponding chloride salt; it was fully characterized (see Tables).

We report above that treatment of $[Pt(dppm-PP')_2]Cl_2$ with Bu'NC gives $[Pt(CNBu')_2(dppm-P)_2]Cl_2$. We also find that when this cation is prepared *in situ* in dichloromethane and $[{M'Cl(PPh_3)}_n]$ added (M' = Ag, n = 4; M' = Au, n = 1), addition of diethyl ether then precipitates the mixed platinum-silver or -gold complexes [(Bu'NC)ClPt(μ -dppm)_2M'Cl]-Cl [M' = Ag (3b) or Au (4)] respectively; *i.e.* loss of one Bu'NC ligand from platinum occurs. Treatment of a deuteriochloroform solution of [(Bu'NC)ClPt(μ -dppm)_2AgCl]Cl with another mol of Bu^tNC causes partial conversion into another species, probably the bis(t-butyl isocyanide) complex [(Bu^t-NC)₂Pt(μ -dppm)₂AgCl]Cl₂. This was not isolated but was characterized in solution by its ³¹P-{¹H} n.m.r. spectral parameters: $\delta(P_A) = +10.3$ p.p.m., ¹J(PtP_A) = 2 124 Hz, $\delta(P_B) = -6.0$ p.p.m., ¹J(¹⁰⁹AgP_B) = 471 Hz, ¹J(¹⁰⁷AgP_B) = 403 Hz, and ²J(P_AP_B) + ⁴J(P_AP_B) = 23 Hz.

Since acetylide groups can be transferred from Cu, Ag, Au, or Hg to platinum (or palladium) and isonitriles from silver or gold to platinum or palladium it was of interest to see if both groups could be transferred from one of these d^{10} metals to platinum. We therefore treated [Pt(dppm-PP')_2]Cl₂ with [Au(C=CPh)(CNBu¹)] prepared *in situ* from AuC=CPh¹⁹ and Bu¹NC in dichloromethane. A ³¹P-{¹H} n.m.r. study of the reaction mixture suggested that the conversion into the desired complex [(Bu¹NC)(PhC=C)Pt(μ -dppm)₂AuCl]Cl (5) had probably occurred. This complex was isolated (see Experimental section) and gave satisfactory elemental analysis (Table 2); it behaved as a 1 : 1 electrolyte in nitrobenzene solution, and in its i.r. spectrum showed v(C=C) at 2 120 cm⁻¹ and v(CN) at 2 220 cm⁻¹. The ³¹P-{¹H} n.m.r. spectrum was broadened at *ca*. 20 °C but at -50 °C showed a deceptively

		Analyse				
Complex	С	Н	N	Other	M.p. (°C) ^c	Ω^{-1} cm ² mol ⁻¹
(1b) ^e	42.2 (40.6) °	3.8 (3.9)	3.15 (2.7)	F. 21.25 (22.0)	> 320	
(2a)	72.8 (72.7)	5.7 (5.4)	1.6 (1.7)	-,,	n.d.	102
(2b)	48.2 (48.6)	3.7 (3.8)	2.1(2.1)	F. 17.4 (17.1)	310-312	136
(2d)	72.9 (72.7)	5.8 (5.8)	1.6 (1.6)	-,,	n.d.	125
(2e)	50.5 (50.2)	4.6 (4.5)	1.9 (1.8)	F. 15.6 (16.5)	296-298	160
(2g)	76.0 (76.0)	5.7 (5.6)	1.6 (1.7)	, , , , ,	n.d.	152
(2h)	51.8 (52.0)	3.9 (4.0)	2.2 (2.3)	F. 18.5 (18.3)	215-216	140
(2i) ^f	77.1 (76.5)	6.1 (6.1)	1.6 (1.2)	-,,	n.d.	160
$(2j)^{g}$	53.0 (54.1)	4.6 (4.7)	2.0(2.1)		n.d.	208
(3a).0.5CH ₂ Cl ₂	50.1 (50.0)	4.0 (3.8)	0.9(1.1)	Cl. 11.0 (11.2)	164-166	25 *
(3b)·CH ₂ Cl ₂	49.9 (50.0)	4.0 (4.1)	1.0 (1.0)	Cl. 12.9 (13.2)	190-193	23 *
(3c)·CH ₂ Cl ₂	51.5 (51.3)	3.9 (3.9)	1.1(1.0)	Cl. 12.4 (12.8)	178	22 *
(3d)	61.6 (61.4)	4.7 (4.8)	1.1 (0.9)	Cl. 4.3 (4.6)	168-172	14 *
(3e).0.4CH,Cl,	53.9 (54.0)	4.0 (4.1)	1.0(1.2)	Cl. 11.8 (11.6)	178	13 *
(3f).0.5CH,Cl,	54.6 (54.9)	4.3 (4.5)	1.1(1.2)	Cl. 11.8 (11.7)	180-183	15 *
(3g).0.8CH,Cl	55.0 (55.4)	4.3 (4.2)	1.6 (1.1)	Cl. 12.8 (12.8)	>230	10 *
(4)·0.85CH,Cl,	47.2 (46.9)	3.9 (3.7)	1.0 (0.8)	Cl. 11.7 (11.2)	187-190	23 *
(5)	53.4 (53.4)	4.3 (4.2)	1.0 (1.0)	Cl. 5.0 (5.0)	225-230	15 *
(6a)	46.8 (47.1)	3.6 (3.6)	0.9 (1.0)	Cl. 9.9 (9.6)	> 350	18 *
(6b).0.2CH,Cl	60.4 (60.7)	4.6 (4.7)	1.1 (0.9)	Cl. 5.75 (5.4)	162-165	28 *

Table 2. Microanalytical, melting point, and electrical conductivity data

^e Calculated values are in parentheses. ^b The presence of dichloromethane of crystallization in some of the complexes was verified by ¹H n.m.r. spectroscopy. ^c Corrected. All complexes decompose on melting. n.d. = Not determined. ^d In acetone at +21 ^cC unless stated otherwise. ^c See Discussion. ^f Also prepared by Balch and co-workers ¹⁴ (see text). ^g Prone to lose Bu'NC, hence poor microanalysis and conductivity data. ^h In nitrobenzene.

n-{r} N.m.r	Torrestore (°C)	S(CLL)	37(0411)	Other
Complex	Temperature (°C)	$O(CH_2)$	J(PtH)	Other
(1b)	21	5.30	33	δ(Bu') 0.64
(2a)	- 80 ^b	4.44	70	δ(Me) 2.46
(2b)	- 80 ^b	4.19	80	$\delta(Me) 3.00$
(2d)	- 80 ^b	4.48	60	δ(Bu') 0.93
(2e)	- 80 ^b	4.73	70	δ(Bu') 0.93
(2g)	- 80 ^b	4.43		δ(Me) 2.65
(2h)	- 80 ^b	4.42		δ(Me) 3.06
(2i)	- 80 ^b	4.44		δ(Bu ¹) 0.84
(2j)	- 80 ^b	4.66		δ(Bu') 0.90
			$^{2}J(\mathrm{HH})$	
(3a)	- 50	<i>∫</i> 4.16	14	$\delta(Me) 2.93, J(P_1CH_3) 21$
		3.75		
(3b)	- 50	{4.20	13	δ(Bu ') 0.78
		(3.72		
(3c)	- 50	4.21	14	δ(Me) 2.29
	6 0	(3.73	1.4	$S(\mathbf{D}, \mathbf{I}) = 0.723I(\mathbf{A} \cdot \mathbf{D} \mathbf{C} \mathbf{H})$
(3d)	50	4.10	14	$O(BU^{-}) = 0.73, J(AgPCH_2) ca. 6 Hz^{+}$
(2.)	50	(3.51	13	$\delta(M_{e}) = 3.09$
(30)	- 50	3 50	15	0(1412) 5.09
(3f)	- 50	(4.25	13	δ(Bu ^t) 0.87
(51)	20	3.18		
(39)	- 50	(4.20	14	δ (Me) 2.31, $^{3}J(AgPCH_{2}P)$ 6 Hz ^c
(58)		4.50		
(4)	- 50	₹4.29	12	δ(Bu') 0.71
		13.92		

^a Spectra measured in CDCl₃, unless otherwise stated, at the temperatures shown; chemical shifts (δ) in p.p.m. (\pm 0.01 p.p.m.) relative to δ (SiMe₄) = 0.00 p.p.m.; coupling constants (*J*) in Hz (\pm 1 Hz). ^b ln CD₃COCD₃. ^c Individual couplings to ¹⁰⁹Ag and ¹⁰⁷Ag not resolved.

simple AA'XX' pattern with satellites due to platinum-195 coupling, viz. $\delta(P_A) = 8.2$ p.p.m., ${}^{1}J(PtP_A) = 2\,336$ Hz, $\delta(P_B) = 26.2$ p.p.m., ${}^{3}J(PtP_B) = 103$ Hz, and ${}^{2}J(P_AP_B) + {}^{4}J(P_AP_B) = 51$ Hz. There was also a singlet resonance in the ${}^{31}P_{-}{}^{1}H$ n.m.r. spectrum at δ 33.0 p.p.m. which was probably due to a gold-dppm complex but which we did not identify. In the ${}^{1}H_{-}{}^{31}P$ n.m.r. pattern at -50 °C, in the chemical

shift region where PCH_2P protons absorb (δ 4.4—4.5 p.p.m.), there were overlapping broad resonances which we could not analyse. The t-butyl resonance occurred at δ 0.73 p.p.m.

Transmetallations.—We have shown in previous papers ^{5,6} that d^{10} metal ions (Cu¹, Ag¹, Au¹, or Hg¹¹) are readily displaced by Rh¹ or Ir¹ (d^{8}) (transmetallation) to form their

Figure 1. ³¹P-{¹H} N.m.r. spectrum of *trans*-[Pt(CNMe)₂-(dppm-P)₂]Cl₂ (2c) in EtOH: (i) at +21 °C, (ii) at -90 °C. \times = Impurity

heterobimetallic complexes with platinum or palladium acetylides. It was clearly of interest to see if one could effect similar displacements of Ag from the heterobimetallic isonitrile complexes already discussed in the present paper. Treatment of [(Bu'NC)ClPt(µ-dppm)₂AgCl]Cl in dichloromethane with [Rh₂Cl₂(CO)₄] caused rapid precipitation of silver chloride. From the mother-liquors the salt [(Bu'NC)-ClPt(µ-dppm)₂RhCl(CO)][RhCl₂(CO)₂] (6a) was isolated and characterized, see Experimental section and Tables. We also made the corresponding BPh₄⁻ salt (6b) by treating [(Bu'NC)-ClPt(µ-dppm)₂AgCl][BPh₄] (3d) in dichloromethane with the equivalent amount of [Rh₂Cl₂(CO)₄]. This tetraphenylborate salt (6b) has ³¹P-{¹H} n.m.r. parameters which are very similar to those of the corresponding $[RhCl_2(CO)_2]^-$ salt (6a) (Table 1). Preliminary work also suggested that the silver of the mixed palladium-silver complex [(p-MeC₆H₄NC)ClPd(µdppm)₂AgCl]Cl (3g) when treated with [Rh₂Cl₂(CO)₄] could be replaced by Rh(CO) to give [(p-MeC₆H₄NC)ClPd(µ-dppm)₂-RhCl(CO)]Cl; this product was not isolated but characterized by ${}^{31}P-{}^{1}H$ n.m.r. spectroscopy in CDCl₃ solution, viz. $\delta(P_A) = +11.9$ p.p.m., $\delta(P_B) = +20.8$ p.p.m., ${}^{1}J(RhP_B) =$ 81 Hz, and ${}^{2}J(P_{A}P_{B}) + {}^{4}J(P_{A}P_{B'}) = 80$ Hz. ${}^{31}P-\{{}^{1}H\}$ N.m.r. studies on the effect of treating complexes (3a), (3c), (3e), and (3f) with [Rh₂Cl₂(CO)₄] also showed that displacement of silver by rhodium occurred but we did not isolate the products.

Figure 2. ³¹P-{¹H} N.m.r. spectrum of $[(Bu^{1}NC)ClPt(\mu-dppm)_2-AgCl]Cl (3b)$ in CDCl₃ at -50 °C. $\times =$ Impurity

It is probable that displacement of silver by other metals from complexes of type (3) could be effected.

Experimental

The general techniques and apparatus used were the same as in other recent papers from this laboratory.²⁰

Preparations.—Salts of the cation $[Pt_2(CNBu^1)_4(\mu-dppm)_2]^{4+}$ (1a). A suspension of $[PtCl_2(dppm-PP')]$ (0.30 g, 0.46 mmol) in methanol (10 cm³) was treated with Bu⁴NC (0.10 g, 1.2 mmol) and the mixture stirred for 15 min at *ca*. 20 °C. The resultant clear solution was evaporated under reduced pressure and the residue triturated with diethyl ether. This gave the chloride salt (1a) as a white solid. Yield 0.30 g (80%).

A solution of this chloride salt (0.10 g, 0.062 mmol) in methanol (10 cm³) was added to a solution of NH_4PF_6 (0.10 g, 0.61 mmol) in methanol (10 cm³). The resultant white precipitate was filtered off, washed with methanol, and dried *in vacuo* to give (1b). Yield 0.11 g (87%).

 $[Pt(CNBu^{1})_{2}(dppm-P)_{2}][PF_{6}]_{2}$ (2e) and other salts of type (2). A solution of Bu¹NC (0.35 g, 4.15 mmol) in methanol (2 cm³) was added to a solution of $[Pt(dppm-PP')_{2}]Cl_{2}$ (2.00 g, 1.93 mmol) in methanol (40 cm³). A solution of NH₄PF₆ (0.66 g, 4.05 mmol) in aqueous methanol [water (6 cm³), MeOH (10 cm³)] was then added. The white precipitate was stirred for 1.5 h, filtered off, washed with water and diethyl ether, and dried *in vacuo* to give the required product (2.51 g, 95%).

Complexes (2b) (73%), (2h) (96%), and (2j) (86%) were made in a similar manner. The tetraphenylborate salts were made by addition of NaBPh₄ in aqueous methanol (instead of NH₄PF₆). Yields: (2a) (81%), (2d) (90%), (2g) (96%), and (2i) (94%).

[(Bu'NC)ClPt(μ -dppm)₂AgCl]Cl (3b) and analogous complexes of type (3). The compound [AgCl(CNBu')] (0.045 g, 0.199 mmol) was added to a stirred solution of [Pt(dppm-PP')₂]Cl₂ (0.200 g, 0.193 mmol) in dichloromethane (5 cm³). When a clear solution had formed, diethyl ether (10 cm³) was added. The resultant mixture was cooled to ca. 5 °C and over a period of 2 d the required product separated as white microcrystals of the dichloromethane solvate. Yield 0.211 g (81%).

The following were prepared in a similar manner in the yields shown: (3a) (77%), (3c) (61%), (3d) (72%), (3e) (80%), (3f) (85%), and (3g) (56%).

Complex (3b) by the alternative method. A solution of Bu'NC (0.042 g, 0.505 mmol) in dichloromethane (1.2 cm³) was added to a solution of $[Pt(dppm-PP')_2]Cl_2$ (0.500 g, 0.483 mmol) in dichloromethane (10 cm³); $[{AgCl(PPh_3)}_4]$ (0.200 g, 0.123 mmol) was then added. The mixture was then stirred for 5 min, and diethyl ether (20 cm³) added to the resultant solution. This precipitated out the required product which was isolated as above, and identified by its ³¹P-{¹H} n.m.r. and i.r. spectra. Yield 0.438 g (72%). When 2 instead of 1 mol equivalents of Bu'NC were added to $[Pt(dppm-PP')_2]Cl_2$ the yield of complex (3b) was 95%.

 $[(Bu^{t}NC)ClPt(\mu-dppm)_{2}AuCl]Cl$ (4). This was made from $[Pt(dppm-PP')_{2}]Cl_{2}$, Bu^tNC, and $[AuCl(PPh_{3})]$ in a similar manner, and obtained as a pale yellow solid in 81% yield.

 $[(Bu^{1}NC)ClPt(\mu-dppm)_{2}AgCl][BPh_{4}]$. A solution of the corresponding chloride salt (0.50 g, 0.371 mmol) in ethanol (5 cm³) was treated with a solution of NaBPh₄ (0.150 g, 0.438 mmol) in ethanol (5 cm³). This gave the required compound as a white precipitate. Yield 0.414 g (71%).

[(Bu^tNC)(PhC=C)Pt(μ -dppm)₂AuCl]Cl (5). A solution of [Pt(dppm-*PP'*)₂]Cl₂ (0.042 g, 0.041 mmol) in dichloromethane (0.4 cm³) was added to a suspension prepared by treating AuC=CPh (0.012 g, 0.040 mmol) with Bu^tNC (0.0035 g, 0.042 mmol) in dichloromethane (0.067 cm³). Benzene was then added to cloud point and the mixture cooled to 5 °C. The required complex crystallized out as a pale yellow solid. A further quantity was obtained by reducing the volume of the mother-liquor under reduced pressure and adding benzene. Yield 0.014 g (98%).

 $[(Bu^{t}NC)ClPt(\mu-dppm)_{2}RhCl(CO)][RhCl_{2}(CO)_{2}]$ (6a). The compound $[Rh_{2}Cl_{2}(CO)_{4}]$ (0.060 g, 0.154 mmol) was added to a solution of $[(Bu^{t}NC)ClPt(\mu-dppm)_{2}AgCl]Cl$ (0.20 g, 0.149 mmol) in methanol (10 cm³). The mixture was then stirred for 1 h at *ca*. 20 °C, when silver chloride precipitated. This was filtered off, n-hexane (15 cm³) added to the filtrate, and the

solution reduced in volume (to *ca.* 2 cm³) under reduced pressure. This gave the required product as yellow microcrystals (0.140 g, 64%).

Acknowledgements

We thank the S.E.R.C. for support and Johnson Matthey Ltd. for the generous loan of rare metal salts.

References

- 1 Part 4, G. R. Cooper, A. T. Hutton, C. R. Langrick, D. M. McEwan, P. G. Pringle, and B. L. Shaw, J. Chem. Soc., Dalton Trans., 1984, 855.
- 2 P. G. Pringle and B. L. Shaw, J. Chem. Soc., Dalton Trans., 1982, 581.
- 3 C. R. Langrick, D. M. McEwan, P. G. Pringle, and B. L. Shaw, J. Chem. Soc., Dalton Trans., 1983, 2487.
- 4 D. M. McEwan, P. G. Pringle, and B. L. Shaw, J. Chem. Soc., Chem. Commun., 1982, 1240.
- 5 G. R. Cooper, A. T. Hutton, D. M. McEwan, P. G. Pringle, and B. L. Shaw, *Inorg. Chim. Acta*, 1983, **76**, L267.
- 6 A. Blagg, A. T. Hutton, P. G. Pringle, and B. L. Shaw, *Inorg. Chim. Acta*, 1983, **76**, L265.
- 7 C. R. Langrick, P. G. Pringle, and B. L. Shaw, *Inorg. Chim.* Acta, 1983, 76, L263.
- 8 L. Malatesta and F. Bonati, 'Isocyanide Complexes of Metals,' Wiley, London, New York, Sydney, Toronto, 1969.
- 9 J. R. Boehm, D. J. Doonan, and A. L. Balch, J. Am. Chem. Soc., 1976, 98, 4845.
- 10 A. L. Balch, J. Am. Chem. Soc., 1976, 98, 8049.
- 11 A. L. Balch and B. Tulyman, Inorg. Chem., 1977, 16, 2840.
- 12 A. L. Balch, J. W. Labadie, and G. Delker, *Inorg. Chem.*, 1979 18, 1224.
- 13 J. T. Mague and S. H. DeVries, Inorg. Chem., 1980, 19, 3743.
- 14 M. M. Olmstead, C.-L. Lee, and A. L. Balch, *Inorg. Chem.*, 1982, 21, 2712.
- 15 D. M. McEwan, P. G. Pringle, and B. L. Shaw, J. Chem. Soc., Chem. Commun., 1982, 859.
- 16 W. S. McDonald, P. G. Pringle, and B. L. Shaw, J. Chem. Soc., Chem. Commun., 1982, 861.
- 17 P. G. Pringle and B. L. Shaw, J. Chem. Soc., Chem. Commun., 1982, 956.
- 18 G. Mingetti, F. Bonati, and M. Massobrio, *Inorg. Chem.*, 1975, 14, 1974.
- 19 G. E. Coates and C. Parkin, J. Chem. Soc., 1962, 3220.
- 20 H. D. Empsall, E. M. Hyde, and B. L. Shaw, J. Chem. Soc., Dalton Trans., 1975, 1690.

Received 12th September 1983; Paper 3/1600